nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 07, v.47 13-19
基于3种算法的海南州泥石流易发性预测及致灾因子研究
基金项目(Foundation): 国家重点研发计划项目(2022YFC3004401); 国家自然科学基金重点项目(52130901); 河南省自然科学基金资助项目(232300421003)
邮箱(Email): gyha184@163.com;
DOI:
摘要:

为筛选诱发泥石流的致灾因子,评估RF、GBDT、XGBoost三种机器学习算法对泥石流易发性进行预测的性能,给泥石流多发区地质灾害预测及防灾减灾工作提供参考,以青海省海南藏族自治州为研究区,基于历史泥石流灾害数据,依据初选的17个影响因子与泥石流灾害的皮尔逊相关系数筛选诱发泥石流发生的致灾因子,对筛余致灾因子进行分级并设置8种致灾因子组合,采用RF、GBDT、XGBoost三种机器学习算法对泥石流易发性进行预测,采用准确率、精确率、召回率、F1分数、ROC-AUC等指标评价预测效果。结果表明:1)与河道距离、高程、土壤可蚀性、地形湿度指数、年降雨量、归一化植被指数、高程变异系数、岩性、地形粗糙度、剖面曲率、曲率、坡度、高程变异系数、坡向是研究区诱发泥石流的致灾因子,其中高程、与河道距离、土壤可蚀性、地形湿度指数、年降雨量、归一化植被指数为主要致灾因子;2)采用RF、XGBD、XGBoost三种机器学习算法对泥石流易发性进行预测时,基于致灾因子组合C7(该组合不考虑坡向)的预测效果最佳,基于致灾因子组合C5(该组合不考虑曲率、高程变异系数、坡向)和C8(该组合考虑所有致灾因子)的预测效果也较好;3)基于致灾因子组合C7进行泥石流易发性预测时,3种算法的优劣排序为XGBoost、GBDT、RF。

Abstract:

In order to screen the disaster-causing factors that induce debris flows, evaluate the performance of the three machine learning algorithms of RF, GBDT and XGBoost, in predicting the susceptibility of debris flows, and provide references for geological disaster prediction and disaster prevention and mitigation in the areas prone to debris flows, taking Hainan Tibetan Autonomous Prefecture, Qinghai Province as the study area and based on historical debris flow disaster data, based on the initially selected 17 influencing factors and the Pearson correlation coefficient of debris flow disasters, the disaster-causing factors that induce debris flow were screened. The remaining disaster-causing factors were classified and 8 combinations of disaster-causing factors were set. The three machine learning algorithm of RF, GBDT, and XGBoost were used to predict the susceptibility of debris flow. The prediction effect was evaluated by indicators such as accuracy rate, precision rate, recall rate, F1 score, and ROC-AUC. The results show that a) distance from the river channel, elevation, soil erodibility, topographic moisture index, annual rainfall, normalized vegetation index, coefficient of variation of elevation, lithology, topographic roughness, profile curvature, curvature, slope, coefficient of variation of elevation, and aspect are the disaster-causing factors that induce debris flows in the study area. Among them, elevation, distance from the river channel, soil erodibility, topographic moisture index, annual rainfall, and normalized vegetation index are the main disaster-causing factors. b) When the three algorithms of RF, GBDT and XGBoost are used to predict the likelihood of debris flow, the prediction effect based on the disaster-causing factor combination C7(this combination does not consider slope direction) is the best, and the prediction effects based on the disaster-causing factor combinations C5(this combination does not consider curvature, coefficient of variation of elevation and slope direction) and C8(this combination considers all disaster-causing factors) are also good. c) When predicting the susceptibility of debris flows based on the disaster-causing factor combination C7, the ranking of the advantages and disadvantages of the three algorithms is XGBoost, GBDT and RF.

参考文献

[1] 张小曳,李泽椿,端义宏.自然灾害风险防控科技支撑体系发展战略研究[M].北京:气象出版社,2021:105.

[2] 唐尧,王立娟,孙彧,等.基于遥感技术的地震高发区山洪-泥石流灾害应急侦测与搜救分析:以汉源县马烈乡“7·20”灾害为例[J].中国地质调查,2025,12(2):112-119.

[3] 李亚娟,王祎阳,黄凯,等.基于水动力分析的下碑寺乡泥石流风险研究[J].地下水,2024,46(4):133-135,256.

[4] 陈哲锋,郭朝旭.基于模糊层次分析法的泥石流易发性地形因子敏感性分析[J].防灾科技学院学报,2023,25(1):21-30.

[5] 王倪山,张程,肖龙,等.干旱河谷区松散土体泥石流发育特征及流量计算:以新疆阿克苏卡尔斯亚沟泥石流为例[J].四川地质学报,2024,44(4):664-670.

[6] 鲜一丁.成昆铁路龙门沟泥石流动力学特征及危险性评估[J].铁道建筑,2024,64(8):156-161.

[7] 彭忠,徐刚,曾谱,等.藏中南玛尼岗南侧泥石流动力学特征、发展趋势及防治建议[J].资源环境与工程,2024,38(6):707-713,720.

[8] 陈德斌,韩庆洋,付晶,等.排导困难区域的泥石流灾害防治模式研究:以新疆布尔津科克逊泥石流为例[J].工程地质学报,2023,31(4):1429-1437.

[9] 魏万军.甘肃省电尕镇地质灾害分布规律及发育特征研究[J].科技创新与应用,2025,15(13):88-92.

[10] 郭鹏宁,邢会歌,李从江,等.基于OOD泛化性验证和深度全连接神经网络的泥石流易发性评价方法[J].工程科学与技术,2024,56(4):182-193.

[11] 李信,薛桂澄,柳长柱,等.基于IV、CF、LRIV和LRCF模型的海南昌江县地质灾害易发性评价研究[J].地震工程学报,2025,47(2):319-330,341.

[12] 周修波,李永红,陈建平,等.基于逻辑回归模型的山区城镇地质灾害风险评价方法[J].城市地质,2025,20(1):81-91.

[13] 周子俣.基于文献计量学分析GIS地质灾害风险评价研究热点[J].矿产勘查,2023,14(2):258-265.

[14] 何必,李远征,陈华,等.基于熵权法和聚类分析的泥石流群危险度评价研究[J].公路,2024,69(9):159-169.

[15] 雷青青,向灵芝,罗亮,等.基于信息量与灾害熵的泥石流危险性评价对比研究:以成兰铁路松潘段为例[J].防灾减灾工程学报,2024,44(4):921-932.

[16] 王诗媛,向洋,高翻翻,等.自然和人为因素影响下的生态系统服务时空演变特征:以关中平原城市群为例[J/OL].西安理工大学学报:1-12(2024-07-11)[2025-01-24].http://kns.cnki.net.

[17] 邓雪沁,孙力楹,陈芳.基于专利角度的我国泥石流灾害预警现状[J].中国科技信息,2025(3):25-27.

[18] 肖烊,郭永刚,卫璐宁.藏东南地区泥石流监测预警系统设计与实现[J].四川地质学报,2024,44(4):708-715.

[19] 陈世泷,孟庆凯,戴勇,等.基于CMIP6未来情景的伊犁河流域地质灾害危险性评估预测[J].干旱区地理,2025,48(4):599-611.

[20] 何子军,刘惠军.基于信息量-随机森林模型的滑坡易发性评价:以云南省双江县滑坡为例[J].甘肃水利水电技术,2024,60(9):55-59.

[21] 周禹彤,葛永刚,陈兴长,等.基于物源特征的泥石流易发性评价:以石鼓—岗托河段为例[J].科学技术与工程,2025,25(8):3123-3133.

[22] 周静,刘敦龙,桑学佳,等.基于CNN-KAN的汶川地震灾区潜势泥石流流域识别方法[J].计算机与现代化,2025(4):70-76.

[23] LEE Sunmin,BAEK Won Kyung,JUNG Hyung Sup,et al.Susceptibility Mapping on Urban Landslides Using Deep Learning Approaches in Mt Umyeon[J].Applied Sciences-Basel,2020,10(22):8189.

[24] 冯兴隆,李争荣,吴爱祥,等.基于组合赋权-物元可拓模型的矿山井下泥石流风险评估及防治[J].矿业研究与开发,2024,44(9):158-166.

[25] 赵健,郭青.互联网小额信贷违约风险识别模型研究:基于集成学习方法[J].华北水利水电大学学报(社会科学版),2025,41(2):54-62.

[26] 张为,李昕,翟少军,等.三峡水库次洪期间降雨特征对洪水过程的影响[J/OL].水利学报:1-11(2025-03-21)[2025-03-23].http://kns.cnki.net.

[27] 邢昭,孟小军,袁晶晶,等.信息量支持下SVM-GBDT模型的滑坡危险性评价[J].科学技术与工程,2025,25(7):2712-2720.

[28] 王昕宇,杨鹏,戴健非.基于RFE-RF-XGBoost的坝体位移预测研究[J].东北师大学报(自然科学版),2021,53(2):60-66.

基本信息:

DOI:

中图分类号:TP18;P642.23

引用信息:

[1]胡少伟,郭要辉,叶宇霄等.基于3种算法的海南州泥石流易发性预测及致灾因子研究[J].人民黄河,2025,47(07):13-19.

基金信息:

国家重点研发计划项目(2022YFC3004401); 国家自然科学基金重点项目(52130901); 河南省自然科学基金资助项目(232300421003)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文