nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 09, v.47 43-54
黄河上游水风光一体化基地发电潜力及生态环境效益预估
基金项目(Foundation): 国家自然科学基金黄河水科学研究联合基金项目(U2243216); 国家重点研发计划项目(2023YFC3006502); 中国博士后科学基金资助项目(2021M692602)
邮箱(Email): fangwei@xaut.edu.cn;
DOI:
摘要:

流域水风光一体化开发是践行低碳、绿色发展理念的重要举措。然而,当前气候变化加剧,导致清洁能源波动性增大、未来发电潜力不确定性升高、一体化基地的生态环境效益难以准确预估,给流域清洁能源高效利用和生态保护造成诸多挑战。为此,以黄河上游茨哈峡水风光一体化基地为研究对象,运用分位数映射法、CNN-LSTM-Attention深度学习预测模型和改进的风光电理论出力计算方法,筛选研究区适用的高精度未来气候模式数据,预测一体化基地规划运行期(2035—2065年)的水风光电逐日平均出力及其多时间尺度互补性,预估一体化基地的生态环境效益。研究结果发现:1)2035—2065年,预测水电、风电、光伏年均发电量分别为101.30亿、11.87亿、437.85亿kW·h。4种SSP情景下,茨哈峡水电站日均入库流量分别增加0.97、1.74、1.25、1.99 m3/s,水电日均理论出力平均上升2.23 MW,风电、光伏日均理论出力平均下降0.29、0.80 MW。2)水风、水光、风光、水风光组合的年发电量相关系数分别为-0.22、0.18、-0.10、-0.03,水风组合的年际互补性更强,年内冬季互补性显著。3)水风光电年均可替代551.02亿kW·h燃煤发电,减碳0.48亿t/a,风光发电替代燃煤发电可实现节水1.08亿m3/a。此外,预计一体化基地下垫面的潜在蒸散发量年均减少284.56 mm,生态系统净初级生产力(NPP)年均增加97.04 gC/m2

Abstract:

Integrated hydro-wind-photovoltaic development in river basins represents a crucial initiative for implementing low-carbon and green development principles. However, intensified climate change currently leads to increased volatility in renewable energy outputs, heightened uncertainty regarding future power generation potential, and challenges in accurately predicting the eco-environmental benefits of integrated energy bases. These factors pose significant obstacles to the efficient utilization of basin clean energy resources and ecological conservation. Therefore, the Cihaxia integrated water-wind-photovoltaic base in the upper reaches of the Yellow River was taken as the research object. The quantile mapping method, CNN-LSTM-Attention deep learning prediction model and improved theoretical output calculation method of water-wind-photovoltaic were used to screen high-precision future climate model data applicable to the study area. The daily average output of water-wind-photovoltaic power and its multi-time scale complementarity during the planned operation period of the integrated base(2035-2065) were predicted, and the ecological and environmental benefits of the integrated base were estimated. The key findings are: a) From 2035 to 2065, the predicted average annual power generation is 10.13 billion kW·h for hydropower, 1.187 billion kW·h for wind power, and 43.785 billion kW·h for photovoltaic power. Under four SSP scenarios, the average daily inflow to the Cihaxia Hydropower Station is increased by 0.97, 1.74, 1.25, and 1.99 m3/s respectively. The average daily theoretical hydropower output is increased by an average of 2.23 MW, while wind and photovoltaic outputs experience slight average decreases of 0.29 MW and 0.80 MW respectively. b) The annual power generation correlation coefficients are-0.22 for hydro-wind, 0.18 for hydro-photovoltaic,-0.10 for wind-photovoltaic and-0.03 for hydro-wind-photovoltaic combined. The hydro-wind combination exhibits stronger inter-annual complementarity, with the strongest intra-annual complementarity occurring during winter. c) The annual power generation from the integrated base can potentially replace 55.102 billion kW·h of coal-fired power, reducing carbon emissions by 48 million tonnes per year. Furthermore, replacing coal power with wind and photovoltaic generation saves approximately 108 million m3 of water annually. Additionally, the base is projected to reduce the average annual potential evapotranspiration of the underlying surface by 284.56 mm and increase the average annual Net Primary Productivity(NPP) of the ecosystem by 97.04 gC/m2.

参考文献

[1] 谢遵党,唐梅英,王建利,等.双碳目标下黄河流域水土风光资源一体化开发模式研究[J].人民黄河,2022,44(5):5-9,14.

[2] SHEN M,CHEN J,ZHUAN M,et al.Estimating Uncertainty and Its Temporal Variation Related to Global Climate Models in Quantifying Climate Change Impacts on Hydrology[J].Journal of Hydrology,2018,556:10-24.

[3] CHANG J,ZHANG H,WANG Y,et al.Impact of Climate Change on Runoff and Uncertainty Analysis[J].Natural Hazards,2017,88:1113-1131.

[4] ZHANG Y,CHENG C,YANG T,et al.Assessment of Climate Change Impacts on the Hydro-Wind-Solar Energy Supply System[J].Renewable and Sustainable Energy Reviews,2022,162:112480.

[5] 朱蓉,王阳,向洋,等.中国风能资源气候特征和开发潜力研究[J].太阳能学报,2021,42(6):409-418.

[6] ZHANG Y,REN J,PU Y,et al.Solar Energy Potential Assessment:A Framework to Integrate Geographic,Technological,and Economic Indices for a Potential Analysis[J].Renewable Energy,2020,149:577-586.

[7] BAGATINI M,BENEVIT M G,BELUCO A,et al.Complementarity in Time Between Hydro,Wind and Solar Energy Resources in the State of Rio Grande Do Sul,in Southern Brazil[J].Energy and Power Engineering,2017,9(9):515-526.

[8] GUO Y,MING B,HUANG Q,et al.Variation-Based Complementarity Assessment Between Wind and Solar Resources in China[J].Energy Conversion and Management,2023,278:116726.

[9] 马瑶瑶,史培军,徐伟,等.干旱区水电站建设运营生态环境影响遥感监测[J].干旱区研究,2023,40(9):1498-1508.

[10] 吴川东,苏泽兵,刘鹄,等.干旱、半干旱区光伏发电设施的生态-水文效应研究评述[J].高原气象,2021,40(3):690-701.

[11] 殷代英,马鹿,屈建军,等.大型光伏电站对共和盆地荒漠区微气候的影响[J].水土保持通报,2017,37(3):15-21.

[12] 张权,姜勃,唐梅英,等.基于水风光一体化开发的黄河上中游水风光资源评价[J].人民黄河,2023,45(6):7-12.

[13] INES A V M,HANSEN J W.Bias Correction of Daily GCM Rainfall for Crop Simulation Studies[J].Agricultural and Forest Meteorology,2006,138(1-4):44-53.

[14] HAYHO K,CAYAN D,FIELD C B,et al.Emissions Pathways,Climate Change,and Impacts on California[J].Proceedings of the National Academy of Sciences,2004,101(34):12422-12427.

[15] 勾芒芒,冯雪瑶,李建茹,等.基于层次分析-熵权法的乌梁素海湖泊生态系统健康评价[J].灌溉排水学报,2025,44(2):93-100.

[16] 徐菲,赵彦伟,杨志峰,等.白洋淀生态系统健康评价[J].生态学报,2013,33(21):6904-6912.

[17] 彭海波,戴善进,李泽华,等.基于CNN-LSTM-Attention融合模型的东江流域中长期水文预报方法及应用[J].中国水利,2025(8):61-66,72.

[18] ZHANG C,ZHOU Y,LU F,et al.Assessing the Performance and Interpretability of the CNN-LSTM-Attention Model for Daily Streamflow Forecasting in Typical Basins of the Eastern Qinghai-Tibet Plateau[J].Scientific Reports,2025,15(1):82.

[19] CHEN H,WANG K,ZHAO M,et al.A CNN-LSTM-Attention Based Seepage Pressure Prediction Method for Earth and Rock Dams[J].Scientific Reports,2025,15(1):12960.

[20] FANG W,YANG C,LIU D,et al.Assessment of Wind and Solar Power Potential and Their Temporal Complementarity in China’s Northwestern Provinces:Insights from ERA5 Reanalysis[J].Energies,2023,16(20):7109.

[21] 高晓清,陈伯龙,杨丽薇,等.风电场理论与实际出力的比较研究:以甘肃酒泉桥东第一风电场为例[J].高原气象,2020,39(2):431-436.

[22] 三梅英,黄祎,刘靖,等.黄河上游水风光能源资源互补性分析[J].水电与抽水蓄能,2024,10(6):39-44.

[23] 李洪美,罗建裕,万秋兰.含间歇性电源的发电资源互补优化研究[J].电力系统保护与控制,2013,41(9):34-39.

[24] 曲直,于继来.风电功率变化的一致性和互补性量化评估[J].电网技术,2013,37(2):507-513.

[25] 叶林,屈晓旭,么艳香,等.风光水多能互补发电系统日内时间尺度运行特性分析[J].电力系统自动化,2018,42(4):158-164.

[26] JAHANFAR A,DRAKE J,SLEEP B,et al.Shading Effects of Photovolatic Panels on the Evapotranspiration Process in Extensive Green Roofs[R].Lyon,France:9th International Conference on Planning and Technologies for Sustainable Management of Water in the City,2016:hal-03322072.

[27] 彭思源,付博,赖雨亲,等.基于光能利用率集成模型的GPP估算不确定性研究[J].北京大学学报(自然科学版),2022,58(2):361-371.

[28] POTTER C S,KLOOSTER S,BROOKS V.Interannual Variability in Terrestrial Net Primary Production:Exploration of Trends and Controls on Regional to Global Scales[J].Ecosystems,1999,2:36-48.

[29] 周秉荣,李凤霞,颜亮东,等.青海省太阳总辐射估算模型研究[J].中国农业气象,2011,32(4):495-499.

[30] 赵国帅.基于光能利用率模型的青海植被净初级生产力模拟研究[D].哈尔滨:东北林业大学,2011:29-34.

[31] 袁艺溶,王继燕,杨嘉葳,等.基于植被指数的若尔盖高原湿地光合有效辐射吸收比例估算研究[J].遥感技术与应用,2022,37(5):1267-1276.

[32] PENG C H,LIU J X,DANG Q L,et al.TRIPLEX:A Generic Hybrid Model for Predicting Forest Growth and Carbon and Nitrogen Dynamics[J].Ecological Modelling,2002,153(1):109-130.

[33] ZHANG Y,XU M,CHEN H,et al.Global Pattern of NPP to GPP Ratio Derived from MODIS Data:Effects of Ecosystem Type,Geographical Location and Climate[J].Global Ecology and Biogeography,2009,18(3):280-290.

基本信息:

DOI:

中图分类号:X322;TM61

引用信息:

[1]黄强,章杰,方伟等.黄河上游水风光一体化基地发电潜力及生态环境效益预估[J].人民黄河,2025,47(09):43-54.

基金信息:

国家自然科学基金黄河水科学研究联合基金项目(U2243216); 国家重点研发计划项目(2023YFC3006502); 中国博士后科学基金资助项目(2021M692602)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文